Examination of clinical and environmental Vibrio parahaemolyticus isolates by multi-locus sequence typing (MLST) and multiple-locus variable-number tandem-repeat analysis (MLVA)
نویسندگان
چکیده
Vibrio parahaemolyticus is a leading cause of seafood-borne infections in the US. This organism has a high genetic diversity that complicates identification of strain relatedness and epidemiological investigations. However, sequence-based analysis methods are promising tools for these identifications. In this study, Multi-Locus Sequence Typing (MLST) and Multiple-Locus Variable-Number Tandem-Repeat Analysis (MLVA) was performed on 58 V. parahaemolyticus isolates (28 of oyster and 30 of clinical origin), to identify differences in phylogeny. The results obtained by both methods were compared to Pulsed-Field Gel Electrophoresis (PFGE) patterns determined in a previous study. Forty-one unique sequence types (STs) were identified by MLST among the 58 isolates. Almost half of the isolates (22) belonged to a new ST and added to the MLST database. A ST could not be generated for 5 (8.6%) isolates, primarily due to an untypable recA locus. Analysis with eBURST did not identify any clonal complex among the strains analyzed and revealed 37 singeltons with 4 of them forming 2 groups (1 of them SLV, and the other a DLV). An established MLVA assay, targeting 12 total genes through three separate 4-plex PCRs, was successfully adapted to high resolution melt (HRM) analysis with faster and easier experimental setup; resulting in 58 unique melt curve patterns. HRM-MLVA was capable of differentiating isolates within the same PFGE cluster and having the same ST. Conclusively, combining the three methods PFGE, MLST, and HRM-MLVA, for the phylogenetic analysis of V. parahaemolyticus resulted in a high resolution subtyping scheme for V. parahaemolyticus. This scheme will be useful as a phylogenetic research tool and as an improved method for outbreak investigations for V. parahaemolyticus.
منابع مشابه
Multiple-locus variable-number tandem repeat analysis of Neisseria meningitidis yields groupings similar to those obtained by multilocus sequence typing.
We identified many variable-number tandem repeat (VNTR) loci in the genomes of Neisseria meningitidis serogroups A, B, and C and utilized a number of these loci to develop a multiple-locus variable-number tandem repeat analysis (MLVA). Eighty-five N. meningitidis serogroup B and C isolates obtained from Dutch patients with invasive meningococcal disease and seven reference strains were analyzed...
متن کاملDevelopment of Multiple-Locus Variable-Number Tandem-Repeat Analysis for Molecular Subtyping of Campylobacter jejuni by Using Capillary Electrophoresis.
Campylobacter jejuni is a common cause of the frequently reported food-borne diseases in developed and developing nations. This study describes the development of multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) using capillary electrophoresis as a novel typing method for microbial source tracking and epidemiological investigation of C. jejuni. Among 36 tandem repeat loci det...
متن کاملMulti-Locus Variable Number of Tandem Repeat Analysis for Rapid and Accurate Typing of Virulent Multidrug Resistant Escherichia coli Clones
One hundred E. coli isolates from Norway (n = 37), Sweden (n = 24), UK (n = 20) and Spain (n = 19), producing CTX-M-type - (n = 84), or SHV-12 (n = 4) extended spectrum β-lactamases, or the plasmid mediated AmpC, CMY-2 (n = 12), were typed using multi-locus sequence typing (MLST) and multi-locus variable number of tandem repeat analysis (MLVA). Isolates clustered into 33 Sequence Types (STs) an...
متن کاملPhylogeny of Mycoplasma bovis isolates from Hungary based on multi locus sequence typing and multiple-locus variable-number tandem repeat analysis
BACKGROUND Mycoplasma bovis is an important pathogen causing pneumonia, mastitis and arthritis in cattle worldwide. As this agent is primarily transmitted by direct contact and spread through animal movements, efficient genotyping systems are essential for the monitoring of the disease and for epidemiological investigations. The aim of this study was to compare and evaluate the multi locus sequ...
متن کاملIdentification of Melioidosis Outbreak by Multilocus Variable Number Tandem Repeat Analysis
Endemic melioidosis is caused by genetically diverse Burkholderia pseudomallei strains. However, clonal outbreaks (multiple cases caused by 1 strain) have occurred, such as from contaminated potable water. B. pseudomallei is designated a group B bioterrorism agent, which necessitates rapidly recognizing point-source outbreaks. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typi...
متن کامل